Abstract Submitted to the International Conference on Strongly Correlated Electron Systems University of Michigan, Ann Arbor August 6-10, 2001

From Antiferromagnetic Order to Static Magnetic Stripes: The Phase Diagram of $(LA,Eu)_{2-x}Sr_xCuO_4$:*

H.-H. Klauss¹, W. Wagener¹, W. Kopmann¹, D. Baabe¹, D. Mienert¹, F.J. Litterst¹, M. Hücker², B. Büchner^{1,2}

- ¹ Institut f. Metallphysik, TU Braunschweig, D-38106 Braunschweig, Germany
- ² II. Physikalisches Institut, RWTH Aachen, D-52056 Aachen, Germany

The magnetic order of ${\rm La_{1.8-x}Eu_{0.2}Sr_xCuO_4}$ (x \leq 0.2) has been investigated with $\mu{\rm SR}$ techniques. In this system a low temperature tetragonal (LTT) structure is present in the entire range of doping and it is possible to follow the evolution from the long range antiferromagnetic state at x=0 to the static magnetic stripes. We find a non-monotonic change of the Néel temperature with increasing x and the obtained magnetic phase diagram of the LTT phase resembles the generic phase diagram of the cuprates where the superconductivity is replaced by a second antiferromagnetic phase † . At a charge doping of x=0.2 a crossover from magnetic order to superconductivity has been found. New experiments show that the ground state at x=0.2 can be tuned from magnetism to superconductivity by a variation of the Eu content between 0.23 and 0.10 changing only the LTT lattice distortion.

^{*}This work was supported by the BMBF and the DFG

[†]Phys. Rev. Lett. **85** (2000) 4590